Paul E. Dimotakis
John K. Northrop Professor of Aeronautics and Professor of Applied Physics
Research interests: fluid physics, dynamics of turbulence, chemically reacting flows, and combustion, measurement technologies and diagnostics development, descending melt-probe planetary exploration of icy worlds.
Overview
Professor Dimotakis focuses on experimental and computational research on turbulent mixing and chemical reactions in subsonic and supersonic free-shear flows; hypersonic propulsion; mixing and the geometry of surfaces and interfaces in turbulence; scalar dispersion in turbulent flows; and related areas.
Space-Related Research
Recent space-related research has been in collaboration with JPL on remote sensing of the atmosphere from space and on the technical feasibility of an asteroid-return mission. Other space-related research has been on high-speed/hypersonic endoatmospheric flight and propulsion, and parachute dynamics for entry, descent, and landing, as well as physics and issues related to a Europa melt-probe to descend through Europa's ice layer to the liquid-water layer.
Related News
Read more newsPublications
Lang, D.B., and P.E. Dimotakis 2025 Experiments on passive-scalar high Schmidt number dispersion in grid turbulence. Exp. Fluids (submitted 24 October 2025).
Rollett, A.D., M.K. Brinkley, P.E. Dimotakis, S. Graham, and V. Pugliano 2025 Materials Maturity Levels: A Systematic Approach to Evaluating Materials Development. Integr. Mater. Manuf. Innov. 14:466-481; doi:10.1007/s40192-025-00413-6
Dimotakis, P.E., and D.B. Lang 2023 Liquid-water and solid-ice fields surrounding a descending melt probe. 2023 NASA Cryobot Workshop (21-23 February 2023, California Institute of Technology, Pasadena, CA); doi:10.7907/az3w-xv24.
Sharan, N., G. Matheou, P.E. Dimotakis 2019 Turbulent shear-layer mixing: initial conditions, and direct-numerical and large-eddy simulations. J. Fluid Mech. 877:35-81; doi:10.1017/jfm.2019.591
Luthman, E., N. Cymbalist, D. Lang, G. Candler, and P. Dimotakis 2019 Simulating schlieren and shadowgraph images from LES data. Exp. Fluids 60:134; doi: 10.1007/s00348-019-2774-6.
Sharan, N., G. Matheou, P.E. Dimotakis 2018 Mixing, scalar boundedness, and numerical dissipation in large-eddy simulations. J. Comp. Physics 369:148-172; doi: 10.1016/j.jcp.2018.05.005
Candler, G.V., N. Cymbalist, and P.E. Dimotakis 2017 Wall-Modeled Large-Eddy Simulation of Autoignition-Dominated Supersonic Combustion. AIAA J. 55(7):2410-2423; DOI: 10.2514/1.J055550
Matheou, G., and P.E. Dimotakis 2016 Scalar excursions in large-eddy simulations. J. Comp. Physics 327:97–120; http://dx.doi.org/10.1016/j.jcp.2016.08.035
Dimotakis, P.E., L. Chen, Z. Li, S. Licata, E. Olsen, and T. Pagano 2012 Retrieval of vertical T, H2O, O3, and CO2 profiles with sensitivity analysis (SA) and uncertainty quantification (UQ). AIRS Science Team Meeting (24-26 April 2012, Caltech, Pasadena, CA), http://airs.jpl.nasa.gov/documents/science_team_meeting_archive/2012_04/
Dimotakis, P.E., B.C. Walker, K.K. Jonietz, and D.A. Rotman (lead authors) 2011 A Greenhouse-Gas Information System: Monitoring and Validating Emissions Reporting and Mitigation. DOE Office of Science Report, LA-UR 11-05512; doi:10.2172/1033495, http://www.osti.gov/bridge/product.biblio.jsp?query_id=1&page=0&osti_id=1033495.
Eliasson, V., M. Mello, A.J. Rosakis, and P.E. Dimotakis 2010 Experimental investigation of converging shocks in water with various confinement materials. Shock Waves 20:395-408; doi:10.1007/s00193-010-0276-9.
Matheou, G., A.M. Bonanos, C. Pantano, and P.E. Dimotakis 2010 Large-eddy simulation of mixing in a recirculating shear flow. J. Fluid Mech. 646:375-414; doi:10.1017/S0022112009992965.
Bond, C., D. Hill, D. Meiron, and P.E. Dimotakis 2009 Shock focusing in a planar convergent geometry: experiment and simulation. J. Fluid Mech. 641:297-333; doi: 10.1017/S0022112009991492.
Benezech, L.J., J.M. Bergthorson, and P.E. Dimotakis 2008 Premixed laminar C3H8- and C3H6-air stagnation flames: experiments and simulations with detailed kinetic models. Proc. Comb. Institute 32:1301-1309.
Chahine, M.T., L. Chen, P. Dimotakis, X. Jiang, Q. Li, E.T. Olsen, T. Pagano, J. Randerson, and Y.L. Yung 2008 Satellite remote sounding of mid-tropospheric CO2. Geophysical Res. Lett. 35:L17807; doi:10.1029/2008GL035022.
Pantano, C., D.I. Pullin, P.E. Dimotakis, and G. Matheou 2008 LES approach for high Reynolds number wall-bounded flows with application to turbulent channel flow. J. Comp. Physics 227:9271-9291; doi:10.1016/j.jcp.2008.04.015.
Bergthorson, J.M., and P.E. Dimotakis 2007 Premixed laminar C1-C2 stagnation flames: experiments and simulations with detailed thermochemistry models. Proc. Comb. Institute 31:1139-1147; doi:10.1016/j.proci.2006.07.110
Dimotakis, P.E., and R. Samtaney 2006 Planar shock cylindrical focusing by a perfect-gas lens. Phys. Fluids 18(3):031705; doi:10.1063/1.2186553.
Dimotakis, P.E., 2005 Turbulent Mixing. Ann. Rev. Fluid Mech. 37:329–356.
Papalexandris, M.V., A. Leonard, and P.E. Dimotakis 2002 Unsplit algorithms for multi-dimensional systems of hyperbolic conservation laws with source terms. Comp. & Math. w. Applications 44:25–49; doi:10.1016/S0898-1221(02)00128-1
Cook, A.W., and P.E. Dimotakis 2001 Transition stages of Rayleigh-Taylor instability between miscible fluids. J. Fluid Mech. 443:69–99.
Dimotakis, P.E., H.J. Catrakis, and D.C. Fourguette 2001 Flow structure and optical beam propagation in high Reynolds number, gas-phase shear layers and jets. J. Fluid Mech. 433:105–134.
Kern, B., T.A. Laurence, C. Martin, and P.E. Dimotakis 2000 Temporal coherence of individual turbulent patterns in atmospheric seeing. Appl. Optics 39(27):4879–4885.
Dimotakis, P.E., 2000 The mixing transition in turbulent flows. J. Fluid Mech. 409:69–98.
Dimotakis, P.E., and P.L. Miller 1990 Some consequences of the boundedness of scalar fluctuations. Phys. Fluids A 2(11):1919-1920; doi: 10.1063/1.857666
Dimotakis, P.E., 1974 Gorter-Mellink Scale and Critical Velocities in Liquid-Helium-II Counterflow. Phys. Rev. A 10(5):1721–1723 [Identified dimensionless number was subsequently named the "Dimotakis number"].