News & Events

Headlines

New Device Powers Wearable Sensors Through Human Motion

10-16-20

Wei Gao, Assistant Professor of Medical Engineering, has been developing sensors as well as novel approaches to power them. Previously, he created a sensor that could monitor health indicators in human sweat that is powered by sweat itself. Now, Gao has developed a new way to power wireless wearable sensors: He harvests kinetic energy that is produced by a person as they move around. "Instead of using fancy materials, we use commercially available flexible circuit boards," he says. "This material is cheap and very durable and mechanically robust over long periods of time." [Caltech story]

Tags: APhMS research highlights MedE KNI Wei Gao

Machine Learning Speeds Up Quantum Chemistry Calculations

10-07-20

A new quantum chemistry tool, called OrbNet, uses machine learning, quantum-chemistry calculations that can be performed 1,000 times faster than previously possible, allowing accurate quantum chemistry research to be performed faster than ever before. OrbNet was developed through a partnership between Tom Miller, Professor of Chemistry, and Anima Anandkumar, Bren Professor of Computing and Mathematical Sciences. [Caltech story]

Tags: research highlights CMS IST CNS Animashree Anandkumar

Professor Gao Unveils Sensor that Rapidly Detects COVID-19 Infection Status, Severity, and Immunity

10-02-20

One feature of the COVID-19 virus that makes it so difficult to contain is that it can be easily spread to others by a person who has yet to show any signs of infection. Wei Gao, Assistant Professor of Medical Engineering, has developed a new type of multiplexed test (a test that combines multiple kinds of data) with a low-cost sensor that may enable the at-home diagnosis of a COVID infection through rapid analysis of small volumes of saliva or blood, without the involvement of a medical professional, in less than 10 minutes. "This is the only telemedicine platform I've seen that can give information about the infection in three types of data with a single sensor," Gao says. "In as little as a few minutes, we can simultaneously check these levels, so we get a full picture about the infection, including early infection, immunity, and severity." [Caltech story]

Tags: APhMS research highlights MedE KNI Wei Gao

Effective Pathway to Convert Greenhouse Gas into Valuable Products

09-18-20

A research team from Caltech and the UCLA Samueli School of Engineering has demonstrated a promising way to efficiently convert carbon dioxide into ethylene—an important chemical used to produce plastics, solvents, cosmetics, and other important products globally. They developed nanoscale copper wires with specially shaped surfaces to catalyze a chemical reaction that reduces greenhouse gas emissions while simultaneously generating ethylene. "The idea of using copper to catalyze this reaction has been around for a long time, but the key is to accelerate the rate so it is fast enough for industrial production," says William A. Goddard III, Charles and Mary Ferkel Professor of Chemistry, Materials Science, and Applied Physics. [Caltech story]

Tags: APhMS research highlights William Goddard

Lab-Grown Earthquakes Reveal the Frictional Forces Acting Beneath Our Feet

09-03-20

Simulating an earthquake on a miniature scale in a laboratory known unofficially as the "seismological wind tunnel," engineers and seismologists have produced the most comprehensive look to date at the complex physics of friction driving destructive thrust-fault earthquakes. "Simulating earthquakes in a lab lets us observe how these brief and violent events grow and evolve by ‘slowing down' their motion through high-speed photography and optics," says Ares Rosakis, the Theodore von Karman Professor of Aeronautics and Mechanical Engineering. [Caltech story]

Tags: research highlights GALCIT MCE Ares Rosakis

Advancing Future Quantum Science Efforts

08-27-20

Five new Department of Energy centers will apply quantum information science to emerging technologies. The centers will develop cutting-edge quantum technologies for use in a wide range of possible applications including scientific computing; fundamental physics and chemistry research; and the design of solar cells and of new materials and pharmaceuticals. Caltech faculty will participate in four of the new science centers: the Quantum Systems Accelerator, led by the Lawrence Berkeley National Laboratory, also known as Berkeley Lab; the Quantum Science Center, led by Oak Ridge National Laboratory; Q-NEXT, led by Argonne National Laboratory; and the Co-design Center for Quantum Advantage, led by Brookhaven National Laboratory. [Caltech story]

Tags: APhMS EE research highlights MedE CMS Oskar Painter KNI Andrei Faraon

AI for a Better Prediction COVID-19 Model

08-25-20

A team of Caltech students, led by Yaser Abu-Mostafa, Professor of Electrical Engineering and Computer Science, have developed a tool to predict the impact of COVID-19 using artificial intelligence (AI). While many models to predict the spread of a disease already exist, few if any incorporate AI, which makes predications based on observations of what is actually happening as opposed to what the model's designers think should happen. AI has the power to discover patterns hidden in data that the human eye might not recognize. [Caltech story]

Tags: EE research highlights CMS Yaser Abu-Mostafa CNS

Collecting Hot Carriers: New Process Harvests Excited Quasiparticles

08-12-20

Harry Atwater, Howard Hughes Professor of Applied Physics and Materials Science; Director, Joint Center for Artificial Photosynthesis, has developed a way to eke more energy out of solar power by collecting freshly charged particles before they have an opportunity to cool off. This fundamental research could one day help scientists harvest energy from the sun more efficiently than by the natural photosynthesis used by plants. "If hot carriers, transporting more energy, could be captured, we would be able to wring three to four times as much energy from solar power," says Atwater. [Caltech story]

Tags: APhMS research highlights Harry Atwater KNI

A Pathway to Longer-Lasting Lithium Batteries

08-06-20

The energy density of batteries have been a major challenge for consumer electronics, electric vehicles, and renewable energy sources. Julia R. Greer, Ruben F. and Donna Mettler Professor of Materials Science, Mechanics and Medical Engineering; Fletcher Jones Foundation Director of the Kavli Nanoscience Institute, has made a discovery that could lead to lithium-ion batteries that are both safer and more powerful. Findings provide guidance for how lithium-ion batteries, one of the most common kinds of rechargeable batteries, can safely hold up to 50 percent more energy. "Every power-requiring application would benefit from batteries with lithium instead of graphite anodes because they can power so much more," says Greer. "Lithium is lightweight, it doesn't occupy much space, and it's tremendously energy dense." [Caltech story]

Tags: APhMS research highlights MCE Julia Greer KNI

Ari Rosner Develops Tool That Configures Socially-Distanced Students In Classrooms

07-31-20

Mechanical engineering student Ari Rosner, has developed an interactive Excel worksheet powered by advanced algorithms to help schools with social distancing in classrooms. Schools can plug a room’s dimensions and social distancing parameters into the worksheet, and the most efficient configuration of students for a designated classroom would automatically be mapped out. Rosner’s model situates students in rows or in a hexagonal pattern, depending on a room’s shape, in order to safely maximize space. "I cried when I saw how this worked," said Rachael Burton, the development director at a small private school in Brooklyn, New York. "I knew Ari’s mathematical chart could save our lives." [Forbes story]

Tags: research highlights MCE Ari Rosner