News & Events


A Science Journey with Fernando Villafuerte


As part of the Science Journeys lecture series—designed to inspire scientific curiosity, especially among students in eighth grade and higher—graduate student Fernando Villafuerte discussed his path to Caltech and his research on batteries, including their role in sustainability solutions. Villafuerte works in the lab of Julia R. Greer, Ruben F. and Donna Mettler Professor of Materials Science, Mechanics and Medical Engineering; and Fletcher Jones Foundation Director of the Kavli Nanoscience Institute. His research focuses on a novel material known as a solid polymer electrolyte, which could potentially be used to create batteries that can store more energy than currently possible. [Caltech story]

Tags: APhMS research highlights MedE MCE Julia Greer Fernando Villafuerte

The Grid Gets Smart


Adaptive electric vehicle chargers and advanced battery designs are some of the ways Caltech researchers are building a more sustainable electric grid. Steven Low, Frank J. Gilloon Professor of Computing and Mathematical Sciences and Electrical Engineering, invented the Adaptive Charging Network (ACN). But Low and others warn that this grid is unprepared for the challenges of the 21st century. “The current grid will very soon hit a wall where, when we add renewable energy, it sits unused because the demand isn’t there at a time when the solar is running,” says Adam Wierman, Professor of Computing and Mathematical Sciences; Director, Information Science and Technology. That is why Caltech researchers are working on ways to break down that barrier to help empower an energy transformation. Julia R. Greer, Ruben F. and Donna Mettler Professor of Materials Science, Mechanics and Medical Engineering; Fletcher Jones Foundation Director of the Kavli Nanoscience Institute, is pushing the limits of the batteries themselves.  [Caltech story]

Tags: EE research highlights CMS Julia Greer Adam Wierman Steven Low Kimberly See

Startup Company Captura Receives XPRIZE Award


Caltech-based startup company Captura, which captures carbon dioxide (CO2) from ocean water to combat climate change, has been awarded $1 million from the XPRIZE Carbon Removal competition. Captura was co-founded by Harry Atwater, Otis Booth Leadership Chair, Division of Engineering and Applied Science; Howard Hughes Professor of Applied Physics and Materials Science; Director, Liquid Sunlight Alliance, and Chengxiang "CX" Xiang, Research Professor of Applied Physics and Materials Science. It has the potential to scale up to harvesting gigatons of carbon dioxide—that is, billions of tons—from the ocean every year. "As far as we can tell, Captura is one the very few companies that is doing carbon capture from ocean water," Xiang says. [Caltech story]

Tags: APhMS research highlights Harry Atwater Chengxiang Xiang

What Is the Future of Wind Energy?


Humans have used windmills to capture the force of the wind as mechanical energy for more than 1,300 years. Unlike early windmills, however, modern wind turbines use generators and other components to convert energy from the spinning blades into a smooth flow of AC electricity. In this video, John Dabiri, Centennial Professor of Aeronautics and Mechanical Engineering discusses the future of wind energy technology. [Caltech story]

Tags: research highlights GALCIT MCE John Dabiri

CE10 Aims to Develop the Roadmap Toward a 50 Percent Reduction in U.S. Global Warming Gas Emissions by 2032


How do we cut U.S. global warming gas emissions by 50 percent within the next 10 years? This question represents the bold target set by President Biden in 2020 to secure U.S. leadership on clean energy technologies by the end of the decade. However, with energy production and consumption in the U.S. intertwined among political, ideological, and technological complexities, the path toward a cleaner energy future remains unclear. The Caltech Energy 10 Project (CE10) aims to define the ambitious but achievable solutions needed to cut U.S. global warming gas emissions in half by 2032. Visit the CE10 website for more detail, a full schedule of speakers, and a link to register for the public program. [Caltech story]

Tags: research highlights

Professor Goddard and Team Find the Simplest Form of a Catalyst


William A. Goddard, Charles and Mary Ferkel Professor of Chemistry, Materials Science, and Applied Physics, is part of research team which finds that an electron is the simplest form of a catalyst. A catalyst is a substance that speeds up a chemical reaction by lowering the barriers from reactants to products. Traditionally, most catalysts contain transition metal as the source of activity. The most recent Nobel Prize in chemistry was awarded to Benjamin List and David W.C. MacMillan for the discovery of pure organic compounds as catalyst for asymmetric organic synthesis. Is there any catalyst simpler than small organic compounds? Yes, in an article published in the latest edition of Nature, a team of Northwestern University and Caltech discovered that an electron itself can play the role of catalyst for the process of molecular recognition. [Nature Article]

Tags: APhMS research highlights William Goddard

Chaining Atoms Together Yields Quantum Storage


Engineers at Caltech have developed an approach for quantum storage that could help pave the way for the development of large-scale optical quantum networks. "The ability to build a technology reproducibly and reliably is key to its success," says graduate student Andrei Ruskuc. "In the scientific context, this let us gain unprecedented insight into microscopic interactions between ytterbium qubits and the vanadium atoms in their environment." The new system relies on nuclear spins—the angular momentum of an atom's nucleus—oscillating collectively as a spin wave. This collective oscillation effectively chains up several atoms to store information. "Based on our previous work, single ytterbium ions were known to be excellent candidates for optical quantum networks, but we needed to link them with additional atoms. We demonstrate that in this work," says Andrei Faraon, Professor of Applied Physics and Electrical Engineering. [Read the paper] [Caltech story]

Tags: APhMS EE research highlights MedE KNI Andrei Faraon Andrei Ruskuc

Professor Anandkumar Tackles COVID-19 with AI


A pair of papers coauthored by Anima Anandkumar, Bren Professor of Computing and Mathematical Sciences, were selected as finalists for the 2021 Association for Computing Machinery (ACM) Gordon Bell Special Prize for High Performance Computing-Based COVID-19 Research. The purpose of the award is to recognize the innovative parallel computing contributions towards the solution of the global crisis. "All the six finalists this year had some component in their calculations that used AI," Anandkumar says. "This has enabled unprecedented understanding of the coronavirus that would not have been possible with conventional tools." [Caltech story]

Tags: research highlights CMS Animashree Anandkumar

Nano-architected Material Refracts Light Backward—An Important Step Toward One Day Creating Photonic Circuits


A newly created nano-architected material exhibits a property that previously was just theoretically possible: it can refract light backward, regardless of the angle at which the light strikes the material. "Negative refraction is crucial to the future of nanophotonics, which seeks to understand and manipulate the behavior of light when it interacts with materials or solid structures at the smallest possible scales," says Julia R. Greer, Ruben F. and Donna Mettler Professor of Materials Science, Mechanics and Medical Engineering; Fletcher Jones Foundation Director of the Kavli Nanoscience Institute. [Caltech story]

Tags: APhMS research highlights MedE MCE Harry Atwater Julia Greer Victoria Chernow Siying Peng Ryan Ng

Wennberg Lab Shows How Wildfire Smoke Increases Ozone Pollution


Using data gathered from a specially equipped jet that spent a month flying through and studying wildfire plumes, scientists have a better understanding now of how wildfire smoke impacts air quality. "Of course it is well known that wildfires lower air quality. But it's important to understand the chemical and physical mechanisms by which they do so that we can more effectively forecast how individual fires will impact the communities downwind of them," says Paul O. Wennberg, R. Stanton Avery Professor of Atmospheric Chemistry and Environmental Science and Engineering; Executive Officer for Environmental Science and Engineering; Director, Ronald and Maxine Linde Center for Global Environmental Science. [Caltech story]

Tags: research highlights ESE Paul Wennberg Lu Xu