Faculty

Yaser Abu-Mostafa

Professor of Electrical Engineering and Computer Science

Machine learning applies to any situation where there is data that we are trying to make sense of, and a target function that we cannot mathematically pin down. The spectrum of applications is huge, going from financial forecasting to medical diagnosis to industrial inspection to recommendation systems, to name a few. The field encompasses neural networks, statistical inference, and data mining.

Webpage
Jess F. Adkins

Smits Family Professor of Geochemistry and Global Environmental Science

Professor Adkins focuses on geochemical investigations of past climates using corals, sediments and their interstitial waters; Rate of deep ocean circulation and its relation to mechanisms of rapid climate changes; Metals as tracers of environmental processes; Radiocarbon and U-series chronology. Chemical oceanography.

Webpage
Aaron D. Ames

Bren Professor of Mechanical and Civil Engineering and Control and Dynamical Systems

Professor Ames’ research interests center on robotics, nonlinear control, hybrid systems and cyber-physical systems, with special emphasis on foundational theory and experimental realization on robotic systems; his lab designs, builds and tests novel bipedal robots and prosthesis with the goal of achieving human-like bipedal robotic walking and translating these capabilities to robotic assistive devices.

Webpage
Animashree (Anima) Anandkumar

Bren Professor of Computing and Mathematical Sciences

Professor Anandkumar's research interests are in the areas of large-scale machine learning, non-convex optimization and high-dimensional statistics. In particular, she has been spearheading the development and analysis of tensor algorithms for machine learning. Tensor decomposition methods are embarrassingly parallel and scalable to enormous datasets. They are guaranteed to converge to the global optimum and yield consistent estimates for many probabilistic models such as topic models, community models, and hidden Markov models. More generally, Professor Anandkumar has been investigating efficient techniques to speed up non-convex optimization such as escaping saddle points efficiently.

Jose E. Andrade

George W. Housner Professor of Civil and Mechanical Engineering; Cecil and Sally Drinkward Leadership Chair, Department of Mechanical and Civil Engineering; Executive Officer for Mechanical and Civil Engineering

Professor Andrade's research focuses on developing a fundamental understanding of the multiscale and multiphysical behaviors of porous materials—everything from soils, rocks, and concrete to bone. He also studies the behavior of granular materials like sand, snow, and even grain stored in silos. His research has particular applications to geologic and engineering infrastructure materials, as well as to the petroleum industry.

Webpage
Domniki Asimaki

Professor of Mechanical and Civil Engineering

Professor Asimaki's research combines geotechnical engineering, computational mechanics and structural dynamics to study natural ground surface features and man-made geotechnical systems --such as ridges, valleys, dams, tunnels, building foundations and offshore structures. One of her research areas is the development of predictive models of soil and foundation response to seismic loading, another area is the engineering of 'green' foundation solutions for offshore wind farms, which are subjected to complex dynamic loading from wind, waves, currents and the cyclical motion of the turbine rotor itself.

Harry A. Atwater

Howard Hughes Professor of Applied Physics and Materials Science; Director, Joint Center for Artificial Photosynthesis

Professor Atwater's research focuses on electronic and photonic materials and devices, photovoltaics, and materials for micromechanical devices.

Webpage
Joanna M. Austin

Professor of Aerospace

Joanna Austin's research is focused on fundamental problems in reactive, compressible flows across a broad range of applications, including hypervelocity flight and planetary entry, supersonic combustion and detonation, bubble dynamics, and explosive geological events.

Jean-Philippe Avouac

Earle C. Anthony Professor of Geology and Mechanical and Civil Engineering

Professor Avouac's research is aimed at better understanding the relationship between crustal deformation, earthquakes, and landscape evolution. He is interested in developing new approaches combined from field observations, satellite imagery, and physically based models. He is particularly interested in orogenic context and am currently involved in research programs in the Himalaya, Taiwan, Tien Shan, and Sumatra.

Alan H. (Al) Barr

Professor of Computer Science

Professor Barr's research involves (1) mathematical simulation methods for computer graphics (2) developing new types of mathematical and computational methods for the study of biophysical behaviors and structures and (3) technological leveraging for medical health care and new medical devices.

Webpage
Paul M. Bellan

Professor of Applied Physics

Professor Bellan focuses on experimental and theoretical plasma physics.

Webpage
Marco Bernardi

Assistant Professor of Applied Physics and Materials Science

Marco Bernardi specializes in theoretical/computational materials science and condensed matter physics. Marco's research group will investigate ideas at the intersection of solar energy conversion, ultra-fast science, excited state dynamics, and many-body electronic structure calculations. His recent research interests include energy conversion at subpicosecond time scale and nanomaterials for photovoltaics.

Webpage
Kaushik Bhattacharya

Howell N. Tyson, Sr., Professor of Mechanics and Materials Science; Vice Provost

Professor Bhattacharya studies the mechanical behavior of solids, and specifically uses theory to guide the development of new materials.  Current research concerns three broad areas: (i) Active materials such as shape-memory alloys, ferroelectrics and liquid crystal elastomers, (ii) Heterogeneous materials and designing unprecedented properties by exploiting heterogeneities, (iii) Coarse-grained density functional theory to understand defects in solids.

Webpage
Guillaume Blanquart

Professor of Mechanical Engineering

Guillaume Blanquart focuses on modeling the interactions between combustion processes and turbulent flows. At the center of the work are fundamental problems such as the formation of pollutants, the effects of turbulence on the dynamics of nano-particles and liquid droplets, and various hydrodynamic and flame instabilities.

Webpage
Simona Bordoni

Professor of Environmental Science and Engineering

Professor Bordoni is interested in the dynamics of important atmospheric processes that influence weather and climate. Her work specifically focuses on the dynamics of monsoon systems, and aims at understanding fundamental dynamical mechanisms which are implicated in their existence, their location and different geographical features, and which might help understand how monsoons change with changing climates.

Webpage
John F. Brady

Chevron Professor of Chemical Engineering and Mechanical Engineering; Executive Officer for Chemical Engineering

John Brady focuses on fluid mechanics and transport processes, and complex and multiphase fluids.

Webpage
Jehoshua (Shuki) Bruck

Gordon and Betty Moore Professor of Computation and Neural Systems and Electrical Engineering

Professor Bruck focuses on distributed computing, fault-tolerant computing, wireless systems, computation in neural and biological systems.

Webpage
Oscar P. Bruno

Professor of Applied and Computational Mathematics

Prof. Bruno's work focuses on development of accurate, high-performance numerical PDE solvers capable of modeling faithfully realistic scientific and engineering configurations. Major theoretical and computational difficulties arise in associated areas of PDE theory, numerical analysis and computational science as a result of intricate and/or singular geometries as well as solution singularities, resonances, nonlinearities, high-frequencies, dispersion, etc. Recently developed Fourier Continuation (FC) and integral-equation techniques, which can successfully tackle such challenges, have enabled accurate solution of previously intractable PDE problems of fundamental importance in science and engineering.

Webpage
Joel W. Burdick

Richard L. and Dorothy M. Hayman Professor of Mechanical Engineering and Bioengineering; Jet Propulsion Laboratory Research Scientist

Professor Burdick focuses on robotics, kinematics, mechanical systems and control. Active research areas include: robotic locomotion, sensor-based motion planning algorithms, multi-fingered robotic manipulation, applied nonlinear control theory, neural prosthetics, and medical applications of robotics.

Venkat Chandrasekaran

Assistant Professor of Computing and Mathematical Sciences and Electrical Engineering

Chandrasekaran’s research interests lie in mathematical optimization and its application to the information sciences.

Webpage