IQIM Postdoctoral and Graduate Student Seminar

Friday May 6, 2022 12:00 PM

Quantum computation in a hybrid array of molecules and Rydberg atoms

Speaker: Chi Zhang, Hutzler Group
Location: East Bridge 114

IQIM Seminar followed by lunch

Abstract: We show that an array of polar molecules interacting with Rydberg atoms is a promising hybrid system for scalable quantum computation. Quantum information is stored in long-lived hyperfine or rotational states of molecules which interact indirectly through resonant dipole-dipole interactions with Rydberg atoms. A two-qubit gate based on this interaction has a duration of 1 s and an achievable fidelity of 99.9%. The gate is insensitive to the motional states of the particles -- the molecules can be in thermal states, the atoms do not need to be trapped during Rydberg excitation, the gate does not heat the molecules, and heating of the atoms is irrelevant. Within a large, static array, the gate can be applied to arbitrary pairs of molecules separated by tens of micrometres, making the scheme highly scalable. The molecule-atom interaction can also be used for rapid qubit initialization and efficient, non-destructive qubit readout, without driving any molecular transitions. Single qubit gates are driven using microwave pulses alone, exploiting the strong electric dipole transitions between rotational states. Thus, all operations required for large scale quantum computation can be done without moving the molecules or exciting them out of their ground electronic states.

Attendees joining in person must have a valid Caltech UID. Please show your UID at the door [114 E. Bridge].

This seminar will be held in person only.

Series IQIM Postdoctoral and Graduate Student Seminar Series

Contact: Marcia Brown at 626-395-4013