The Utility of Instability

A 3-D–printed logic gate with bistable elements linked together by springs to transmit signals. Credit: Dennis Kochmann/Caltech

A 3-D–printed logic gate with bistable elements linked together by springs to transmit signals. Credit: Dennis Kochmann/Caltech

Professors Dennis M. Kochmann and Chiara Daraio along with colleagues from Harvard have designed and created mechanical chains made of soft matter that can transmit signals across long distances. Because they are flexible, the circuits could be used in machines such as soft robots or lightweight aircraft constructed from pliable, nonmetallic materials. "Engineers tend to shy away from instability. "Though there are many applications, the fundamental principles that we explore are most exciting to me," Kochmann says. "These nonlinear systems show very similar behavior to materials at the atomic scale but these are difficult to access experimentally or computationally. Now we have built a simple macroscale analogue that mimics how they behave." [Caltech story]

Tags: research highlights Chiara Daraio GALCIT MCE Dennis Kochmann